
Novel Results on the Biocyclisation of 2,3-Oxidosqualene Analogs by Sterol Cyclase

(Received in USA 8 October 1992)

Although Oxidosqualenes analogs bearing a $E-\Delta^{18-19}$ C,C double bond are cyclized by 2,3-oxidosqualene cyclase (EC 5.4.99.7, "sterol cyclase") to produce 20-R norlanosterols, thoses possessing a $Z-\Delta^{18-19}$ C,C double bond instead produce, a mixture of 20-S norlanosterols and tricyclic derivatives whose ratio depends upon the length of the side chain.

A few years ago we reported that 2,3-oxidosqualene analogs possessing a $Z-\Delta^{18-19}$ C,C double bond $1a_Z^{-1}$ and $1b_Z^{-2}$ are cyclized by 2,3-oxidosqualene cyclase (EC 5.4.99.7, "sterol cyclase") to produce inter alia a tetracyclic compound with norlanosterol structure, $2a_S$, but inverted stereochemistry at C-20, or tricyclic derivatives $3b_Z$ or $4b_Z$, depending upon the length of the chain attached at C-19 of 1_Z (Scheme 1 and 2). These clear cut results led us to investigate the behavior of $1c_Z$ possessing the same stereochemistry but an alkyl side chain with intermediate structure between the one of $1a_Z$ and $1b_Z$ and to determine the structure of some minor compounds isolated in our previous work. 1.2

The (\pm) 2,3-oxidosqualene analog $1c_Z$ (302 dpm/nmol.) was synthesized ^{3,4} as described below and incubated with a purified preparation of 2,3-oxidosqualene cyclase from pig liver ⁵ (5 mg, 0.12 mmol., 3905292 dpm, 6 ml AII fraction, 20°C, 3h, under nitrogen). The resulting mixture was saponified, extracted with ether and purified on SiO_2 (preparative TLC plate, Merck, benzene-ethyl acetate 95-5) yielding recovered $1c_Z$ (70%, R_f 0.8), an intractable mixture of $2c_S$ and $5c_Z$ (ratio 40/60, R_f 0.45-0.34) and $3c_Z$ (R_f 0.20-0.14) each mixed with unlabeled compounds present in the enzymic preparation.⁶⁻⁸

 $2c_S$ and $5c_Z$ were in turn separated as their acetates $2c_S$ -Ac and $5c_Z$ -Ac by sequential acetylation (excess Ac₂O, pyridine, 20°C, 17h, 93% yield) followed by HPLC purification (Lichrosorb, RP-18, 7 μ , Merck, methanol) and have been obtained free from unlabeled compounds. $3c_Z$ was further freed from the high amount of exogenous cholesterol present by crystallization followed by HPLC purification (Lichrospher, Si-100, 5μ , Merck, hexane-ether 8-2). The structures of $2c_S$ -Ac, $3c_Z$ and $5c_Z$ -Ac were determined by 1 H, 13 C 1D and 2D NMR. Spectra (DQF-COSY, NOESY, Long range COSY, HMQC) of $3c_Z$ 9,10 were compared

366 A. Krief et al.

with those of its related derivative $3b_Z^{9,10}$ and spectra of $2c_S$ -Ac were compared with those of an authentic sample. 11,12

The presence of the tricyclic product $\mathbf{5c}_Z$ as the major cyclized component from the biotransformation involving $\mathbf{1c}_Z$ led us to suspect the presence of related derivatives among the various products isolated in small quantities in the reactions involving $\mathbf{1a}_Z$ and $\mathbf{1b}_{Z}$. We therefore repeated both biosynthetic experiments, and in doing so confirmed our previous results and isolated one compound in each case to which we have assigned the structure $\mathbf{5a}_Z$ (12% yield) and $\mathbf{5b}_Z$ (1.4% yield). We recall that such tricyclic products have also been isolated in the biocyclization of 2,3-oxidosqualene analogs $\mathbf{1a}_E$ possessing a E Δ^{18-19} C,C double bond and $\mathbf{1d}$.

The results of our work involving the reaction of four 2,3-oxidosqualene analogues 1_Z possessing a Z Δ^{18-19} C,C double bond bearing a side chain of different length are assembled in scheme 2. Particularly impressive is the fact that all of these unnatural substrates are so well accepted and cyclized by 2,3-oxidosqualene cyclase from pig liver (EC 5.4.99.7, "sterol cyclase", $1a_Z$ - c_Z ,d: 80, 78, 60 and 76% yields)]. It can be observed that the shorter the side chain (i.e. the smallest the modification is compared to the natural substrate) the higher the percentage of 20(S)-lanosterol analogue 2 formed and the lower the amount of the tricyclic derivatives 3_Z , 4_Z and 5_Z produced. It is nevertheless difficult to rationalize the ratios of the different tricyclic derivatives formed. Why 4_Z is so scarcely produced and why the percentage of the tricyclic products 5_Z is so fluctuating is unclear. The fact that only one of the possible stereoisomers of 5_Z is produced in each case suggests that they are each formed in a biosynthetic step and do not result, for example, from 3_Z or 4_Z via an acid catalyzed non enzymic pathway. 15

The stereochemistry of the tricyclic skeleton in 3_Z and 4_Z and the β -orientation of their side chains suggest that the cyclization takes place through anti-periplanar additions of the C,C double bonds of the 2,3-oxidopolyenes folded in the enzyme in a chair-boat-chair conformation. The case of the tricyclic product 5_Z is more intriguing since again the side chain is β -oriented. This can be rationalized by considering that 5_Z is derived: (i) from a tricyclic skeleton bearing an α -oriented side chain and arising from anti-periplanar addition of C,C double bonds of 2,3-oxidopolyenes folded in the enzyme in a chair-boat conformation. The (H, Me) migrations and the loss of the hydride which led finally to the olefinic compound 5_Z are therefore expected to occur through concerted anti-periplanar 1,2-shifts, (ii) from the precursors of 3_Z and/or 4_Z bearing a β -oriented side chain arising from the 2,3-oxidopolyenes folded in the enzyme in a chair-boat-chair conformation. In order to explain the β -orientation of the side chain in 5_Z , we must assume, that a stepwise mechanism is operative involving a syn-periplanar migration of at least the first migrating Me group. 16,17 In

order to fully understand the intimate mechanism of transformation of 1z to 3z, 4z and 5z it is important to determine unambiguously the stereochemistry at the remaining chiral center on the side chain of these compounds. We are currently working towards this end.

The authors thanks IRSIA (Institut pour l'Encouragement de la Recherche dans l'Industrie et l'Agriculture, Belgium for a fellowship to one of us (P.P.)

References

- Hérin, M.; Sandra P.; Krief, A. Tetrahedron Lett. 1979, 3103.
- Krief, A.; Schauder, J.-R.; Guittet, E; du Penhoat, C.H.; Lallemand, J.-Y. J. Amer. Chem. Soc. 1987,
- The 2,3-oxidosqualene $1c_Z$ and $1c_E$ possessing a Z or a E Δ^{18-19} C,C bond were synthesized as shown in scheme 3, using the Biellmann coupling reaction, between the functionalized α-lithio allylic sulfide ² 6c and the allylic chlorides 12. The latter were in turn prepared by a sequence of reactions which involved (i) the ozonolysis of geranyl benzyl ether [(a) 1.3 equiv. O₃, CH₂Cl₂, -78°C (b) Me₂S, 40°C, 2h, then 25°C, 12h, 60% yield in 7c] and (ii) its further reaction with 2-lithio-2-methylseleno pentane 8 4 [(a) 1.3 equiv., THF, -78°C, 1h (b) aq. NH4Cl, 20°C, 77% yield in 9 as a 1/1 mixture of diasteroisomers 9cz and 9c_E]. This mixture was resolved in its constituents by chromatography on silicagel [(Lobar, Lichroprep Si, Merck) eluted with a solution of hexane-ethyl acetate: 96-4, TLC (SiO₂, pentane-ether 80-20, four elutions, 9c_Z: 35% yield, R_f 0.73; 9c_E: 27% yield, R_f 0.67)]. Purified 9c_Z and 9c_E were in turn reacted with PI₃ [1.5 equiv., 9 equiv. NEt₃, CH₂Cl₂, 20°C, 1h] stereospecifically producing the 2E,6Z 10c_Z and the 2E,6E 10c_E 1-benzyloxy-3,7-dimethyl decadiene in 88 and 86% yields respectively [TLC, SiO₂, pentane-ether 94-06, 10c₂, R_f 0.76 and 10c_E R_f 0.75]. Deprotection of the benzyl ethers led to the corresponding alcohols [3.7 equiv. Li, ether-NH₃: 1-2.3, -78°C, 0.3h then i-PrOH then NH₄Cl, $11c_Z$ or $11c_E$: 95% yield, R_f 0.53 each, TLC, SiO₂, pentane-ether 60-40] which were in turn transformed to the corresponding E-allylic chlorides 12 by the Stork-Grieco method [(a) 1 equiv. MeLi, ether-HMPA: 2-1, 0°C (b) 1.5 equiv. TosCl, 20°C, 7 equiv. LiCl, 20°C, 15h, 99% yield equiv. MeLi, emer-HMPA: 2-1, U-C (b) 1.5 equiv. Iosci, 20°C, 7 equiv. LiCi, 20°C, 15h, 99% yield each)]. The synthesis of 1c was achieved from that stage by (i) alkylation of 6c [from the corresponding sulfide (a) 0.9 equiv. n-Buli, THF, -78°C, 2.5h and (b) 0.7 equiv. 12, THF, -78°C, 2h, 13cz: 60% yield, 13c_E: 70% yield, R_f 0.6 each, TLC, SiO₂, pentane-ether 94-6) and (ii) further reduction of the resulting sulfide [30 equiv. Li, EtNH₂, -15°C, 0.5h then NH₄Cl, 14c_Z or 14c_E: 67% yield and R_f 0.86 each, TLC, SiO₂, pentane-ether 94-6]. The dioxolane moise in 14c was removed by treatment with aqueous lithium perchlorate to provide the diols 15c [3N, aq. HClO₄, THF, 20°C, 5h, 15c_Z or 15c_E: 90% yield and R_f 0.8 each, TLC, SiO₂, pentane-ether 30-70] which were immediately cyclized to 1c through their mesylates [(a) 10 equiv. MeSO₂Cl, pyridine, 20°C, 3h (b) K₂CO₃, MeOH, 20°C, 2h, 1c_Z or 1c_E: 86% yield from 15 and R_f 0.48 each, TLC, SiO₂, benzene). Tritiated 1c_Z or 1c_E were obtained from 15c_Z and 15c_E by their sequential cleavage to the aldehydes 16c (NaIO₄, MeOH, phosphate buffer pH 7.2, 0°C, 1h, 0°C, 3h, 16c_Z: 80% and 16c_E: 90% yield and R_f 0.76 each, TLC, SiO₂, benzene) followed by their sequential [(1Ci/ml) T₂O, NEt₃, THF, 50°C, 17h, sealed tube, quantitative yield, 16c_Z*: 6036 and 16c_E*: 3398 dpm/nmole) and their further reaction with isopropylidene diphenylsulfurane [(a)Ph₂S-CHMe₂, BF₄, 1 equiv. LDA, 1 equiv. CH₂Cl₂, -78°C, 0.5h, THF, then addition of 16c*, -78°C, 3h, $1c_Z$ * 50% yield and $1c_B$ * 54% yield].
- (a) Krief, A., Dumont, W.; Cravador, A.; Denis, J.N.; Halazy, S.; Hevesi, L.; Labar, D.; Lucchetti, J.; Rémion, J.; Sevrin, M.; Van Ende, D. Bull. Soc. Chim. Fr., 1980, N° 11-12, II, 519 (b) Labar, D.; Krief, A. J. Chem. Soc. Chem. Commun., 1982, 564 and references cited. (c) Krief, A. Comprehensive Organic Synthesis, Trost, B.M.; Fleming, I.; Schreiber, S. ed. 1992, vol 1, Ch. 2.6,
- Yamamoto, S.; Lin, K.; Bloch, K. Proc. Natl. Acad. Sci. USA, 1969, 63, 110
- Unidentified compounds (a) 1% (b) 3% (Rf 0.05) are also present in this mixture. For the purpose of comparison, we investigated the behavior of the stereoisomeric 2,3-oxidosqualene $1c_{\rm E}$ possessing a E- Δ^{18-19} C,C bond and observed that it led exclusively to the formation of the 20(R)norlanosterol derivative 2c_R.8
- This compound was compared with an authentic sample prepared (scheme 4) from lanosteryl acetate via ozonolysis of its 24-25 C,C double bond, Wolf-Kishner reduction of the resulting aldehyde 17 [(i) (a) O₃,CH₂Cl₂-pyridine, 0°C, 64% yield (b) 2.8 equiv. Me₂S, 20°C, 3h (ii) NH₂NH₂, KOH, ethylene glycol-ethanol, 120°C, 1h, 180°C, 2h, 200°C, 0.2h, quantitative yield in 2c_R, 96% purity].
- The 2D NMR spectra of $3c_Z$, which is for obvious reasons simpler than that of $3b_Z$ shows that the side chain on the five membered ring lies on the β-side. Comparison of both spectra clearly suggested a

368 A. Krief et al.

similar orientation for the side chain on $3b_Z$ and on the basis of additional experiments (NOESY at 600 MHz among others) we have reassigned 10 its stereochemistry at that center.

- 10. Guittet, E.; du Penhoat, C. H.; Lallemand, J-Y.; Schauder, J-R.; Krief, A. J. Amer. Chem. Soc., 1987, 109, 7911.
- 11. Prepared from 3β-tetrahydropyranyloxy lanosterol by a sequence of reactions which involved the intermediary formation of 18, ¹² its further reaction with ethyl magnesiumbromide [2.9 equiv., etherbenzene 3-1, 25°C, 1h, 88% yield, contaminated with 5% of its 20R stereoisomer] leading to the alcohol 19 which after oxidation and removal of the THP group produces 20 [(i) 6.3 equiv. PCC, 4.2 equiv. AcONa, CH₂Cl₂, 20°C, 3.5h (ii) 0.5 equiv. PTSA, MeOH-CH₂Cl₂ 2-1, 20°C, 3h, 74% overall yield]. The latter was in turn transformed to the desired norlanosterol 2c₈ by reduction of the corresponding thioacetal 21 [(i) (CH₂SH)₂, AcOH, Et₂O-BF₃, 20°C, 24h, 86% yield (ii) Li, EtNH₂, -15°C, 0.25h, 92% yield including 19% of another compound to which we have not attributed a structure and which was separated from the desired compound after acetylation.
- 12. Schauder, J.R.; Krief, A. Tetrahedron Lett. 1982, 23, 4389.
- 13. Krief, A.; Pasau, P.; Quéré, L. Biorg. & Med. Chem. Lett. 1991, 1, 365.
- 14. This is not the case if Saccharomyces cerevisiae is used instead. 13
- 15. We have observed during a ¹H NMR experiment performed in impure CDCl₃ containing a trace of acid, that $3c_Z$ led (trace of HCl, CHCl₃, 20°C) to $4c_Z$ (life time < 0.1h) which immediately rearranged to a large number of "by-products" containing traces of $5c_Z$. We have ruled out a chemical isomerisation of $3c_Z$ to $5c_Z$ since we have not found such "by-products" besides $5c_Z$ in the biosynthetic experiment and because we recovered $3c_Z$ and not $5c_Z$ when a pure sample of $3c_Z$ was purified again under the same conditions used for its former purification.
- 16. This kind of assumption has been also used by Corey ¹⁷ to explain the stereochemistry of the β-oriented side chain at C-17 of a protosterol derivative occurring from cyclisation of an oxidosqualene analogue bearing a Δ²⁰⁻²¹ extra C,C double bond.
- Corey, E.J.; Virgil, S.C.; Sarshar S. J. Amer. Chem. Soc., 1991, 113, 8171.
 Scheme 3*

* Series a: R₁=Me, R₂=Pr, Series b: R₁=Pr, R₂=Me

Scheme 4